5 research outputs found

    EASND: Energy Adaptive Secure Neighbour Discovery Scheme for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) is defined as a distributed system of networking, which is enabled with set of resource constrained sensors, thus attempt to providing a large set of capabilities and connectivity interferences. After deployment nodes in the network must automatically affected heterogeneity of framework and design framework steps, including obtaining knowledge of neighbor nodes for relaying information. The primary goal of the neighbor discovery process is reducing power consumption and enhancing the lifespan of sensor devices. The sensor devices incorporate with advanced multi-purpose protocols, and specifically communication models with the pre-eminent objective of WSN applications. This paper introduces the power and security aware neighbor discovery for WSNs in symmetric and asymmetric scenarios. We have used different of neighbor discovery protocols and security models to make the network as a realistic application dependent model. Finally, we conduct simulation to analyze the performance of the proposed EASND in terms of energy efficiency, collisions, and security. The node channel utilization is exceptionally elevated, and the energy consumption to the discovery of neighbor nodes will also be significantly minimized. Experimental results show that the proposed model has valid accomplishment

    Effectiveness of a novel mobile health (Peek) and education intervention on spectacle wear amongst children in India: Results from a randomized superiority trial in India.

    Get PDF
    BACKGROUND: Uncorrected refractive errors can be corrected by spectacles which improve visual functioning, academic performance and quality of life. However, spectacle wear can be low due to teasing/bullying, parental disapproval and no perceived benefit.Hypothesis: higher proportion of children with uncorrected refractive errors in the schools allocated to the intervention will wear their spectacles 3-4 months after they are dispensed. METHODS: A superiority, cluster-randomised controlled trial was undertaken in 50 government schools in Hyderabad, India using a superiority margin of 20%. Schools were the unit of randomization. Schools were randomized to intervention or a standard school programme. The same clinical procedures were followed in both arms and free spectacles were delivered to schools. Children 11-15 years with a presenting Snellen visual acuity of <6/9.5 in one or both eyes whose binocular acuity improved by ≥2 lines were recruited.In the intervention arm, classroom health education was delivered before vision screening using printed images which mimic the visual blur of uncorrected refractive error (PeekSim). Children requiring spectacles selected one image to give their parents who were also sent automated voice messages in the local language through Peek. The primary outcome was spectacle wear at 3-4 months, assessed by masked field workers at unannounced school visits. www.controlled-trials.com ISRCTN78134921 Registered on 29 June 2016. FINDINGS: 701 children were prescribed spectacles (intervention arm: 376, control arm: 325). 535/701 (80%) were assessed at 3-4 months: intervention arm: 291/352 (82.7%); standard arm: 244/314 (77.7%). Spectacle wear was 156/291 (53.6%) in the intervention arm and 129/244 (52.9%) in the standard arm, a difference of 0.7% (95% confidence interval (CI), -0.08, 0.09). amongst the 291 (78%) parents contacted, only 13.9% had received the child delivered PeekSim image, 70.3% received the voice messages and 97.2% understood them. INTERPRETATION: Spectacle wear was similar in both arms of the trial, one explanation being that health education for parents was not fully received. Health education messages to create behaviour change need to be targeted at the recipient and influencers in an appropriate, acceptable and accessible medium. FUNDING: USAID (Childhood Blindness Programme), Seeing is Believing Innovation Fund and the Vision Impact Institute

    Live Imaging of Immune Responses in Experimental Models of Multiple Sclerosis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the central nervous system (CNS) characterized by multifocal perivascular infiltrates that predominantly comprise lymphocytes and macrophages. During EAE, autoreactive T cells first become active in the secondary lymphoid organs upon contact with antigen-presenting cells (APCs), and then gain access to CNS parenchyma, through a compromised blood-brain barrier, subsequently inducing inflammation and demyelination. Two-photon laser scanning microscopy (TPLSM) is an ideal tool for intravital imaging because of its low phototoxicity, deep tissue penetration, and high resolution. In the last decade, TPLSM has been used to visualize the behavior of T cells and their contact with APCs in the lymph nodes (LNs) and target tissues in several models of autoimmune diseases. The leptomeninges and cerebrospinal fluid represent particularly important points for T cell entry into the CNS and reactivation following contact with local APCs during the preclinical phase of EAE. In this review, we highlight recent findings concerning the pathogenesis of EAE and MS, emphasizing the use of TPLSM to characterize T cell activation in the LNs and CNS, as well as the mechanisms of tolerance induction. Furthermore, we discuss how advanced imaging unveils disease mechanisms and helps to identify novel therapeutic strategies to treat CNS autoimmunity and inflammation
    corecore